科目名	機器分析Ⅰ	英語科目名	Instrumental Analysis I	
開講年度・学期	平成22年度・前期	対象学科・専攻・学年	物質工学科 4 年	
授業形態	講義	必修 or 選択	選択	
単位数	1 単位	単位種類	学習単位(30+15)h	
担当教員	亀山雅之	居室(もしくは所属)	電気・物質棟4階	
電話	0285-20-2801	E-mail	kameyama@oyama-ct.ac.jp	
授業の達成目標				

- 1. 紫外吸収スペクトル、核磁気共鳴スペクトル、赤外吸収スペクトル、質量スペクトルを正しく読み取れる。
- 2. 測定された各スペクトルの特徴的なデータと化合物の構造を正しく関連付けできる。
- 3. 各スペクトルから得られた情報を総合的に解析し、その化合物の構造を推定できる。

各達成目標に対する達成度の具体的な評価方法

達成目標1-3:試験において60%以上の得点により評価する。

評価方法

原則として次の2項目の加重平均により評価する。

1.各試験:90% 2.演習問題および課題:10%

試験での教科書、参考書、ノート、およびそれらのコピーの持ち込みは不可とする。

試験での教科書、参考書、ノート、およひそ		
授業内容	授業内容に対する自学自習項目	自学自習時間
1 . 1章 構造解析とスペクトル	予習:教科書の該当する部分を精読する。 復習:電磁波と分光学の概略について理解を深める。	1
2. 2章 紫外分光法(UV)	予習:教科書の該当する部分を精読する。 復習:UV スペクトルの概要と解析について理解を深める。	1
3. 4章 核磁気共鳴分光法(NMR)の概要と測定	予習:教科書の該当する部分を精読する。 復習:NMRの概略と測定法について理解を深める。	1
4 . 1H NMR スペクトルの解析:化学シフト、スピン - スピン結合	予習:教科書の該当する部分を精読する。 復習:化学シフトおよびスピン - スピン結合について 理解を深める。	1
5 . 1H NMR 分光法の応用と FT-NMR	予習:教科書の該当する部分を精読する。 復習:1H NMR 分光法の応用と FT-NMR について理解を 深める。	1
6 . 5章 13C NMR	予習:教科書の該当する部分を精読する。 復習:13C NMR ついて理解を深める。	1
7. 演習:複雑なカップリング、1H 概略 図、帰属	予習:教科書の該当する部分を精読する。 復習:複雑なカップリングについて理解を深める。1H NMRの概略図を書く。スペクトルから構造を推定し、 帰属する。	1
8. 中間試験	中間試験問題を再度回答する。	1
9. 答案返却・解説、3章 赤外分光法 (IR)の概要と測定	予習:教科書の該当する部分を精読する。 復習:解説を基に試験問題について復習する。IR スペクトルの概要について理解を深める。	
10. IR スペクトル	予習:教科書の該当する部分を精読する。 復習:IR スペクトルの特性吸収と官能基について理解を深める。	1
11.6章 質量分析法(MS)の原理と測定	予習:教科書の該当する部分を精読する。 復習:質量分析法(MS)の原理と測定について理解を 深める。	1
12. 質量スペクトルの解析:分子式の決 定、フラグメンテーション	予習:教科書の該当する部分を精読する。 復習:質量スペクトルの解析について理解を深める。	1
13. 構造決定演習: MS, IR, NMR を用いる構造決定	予習:配布資料の問題を解答する。 復習:配布資料により、重要事項を確認する。	1
14. 構造決定演習: MS, IR, NMR を用いる構造決定	予習:配布資料の問題を解答する。 復習:配布資料により、重要事項を確認する。	1
・・・・・期末試験・・・・・	試験問題を再度回答する。	
15. 答案返却・解説	解説を基に試験問題について復習する。	1
自学自習時間合計		

キーワード	質量スペクトル、赤外吸収スペクトル、核磁気共鳴スペクトル、構造決定			
教科書	1. 小川・榊原・村田著「基礎から学ぶ有機化合物のスペクトル解析」(東京化学同人)			
	2. McMurry 著、伊東・児玉訳「マクマリー有機化学概説 第13章」(東京化学同人)			
参考書	1. R.M.Silverstein, F.X.Webster 著、荒木 峻 等訳「有機化合物のスペクトルによる同定法」(東			
	京化学同人)			
	2. 田中誠之・飯田芳男「機器分析」(裳華房)			
	3. 安藤喬志、宗宮 創「これならわかるNMR」(化学同人)			
小山高専の教育方針 ~ との対応				
技術者教育プログラムの学習・教育目標		(A-2)基礎知識を専門工学分野の問題に応用して解くことができること。		
		(C - 1)工業技術が自然や社会環境に与える影響を認識でき、資源 やエネルギー、環境を考慮した技術を志向できるようになること。		
JABEE 基準 1 の(1)との関係		(d(2-a)), (g)		
カリキュラム中の位置づけ				
前年度までの関連科目		有機化学 I・II、生物化学、物質工学入門、一般理科、化学 I・II		
現学年の関連科目		有機化学 III、高分子化学、生物工学実験		
		5 学年:機器分析 II、工業化学、環境化学、天然物化学、高分子材料、		
次年度以降の関連科目		生物有機化学		
		物質工学専攻:有機合成化学、有機材料化学、立体化学		
連絡事項				

連絡事項

- 1. 個々のスペクトルの理解から始め、得られた情報を総合的に分析してください。
- 2. パズルを解くような要領で、構造を決めましょう。
- 3. 演習問題や課題を必ず行い、理解度を確認してください。
- 4. 質問等はメールでも受け付けます。

シラバス作成年月日 平成22年2月28日